PFAS Analysis Using High Resolution Accurate Mass Spectrometry

Craig Butt, Simon Roberts, Matthew Noestheden | SCIEX Christopher Higgins | Colorado School of Mines

August 11, 2021

- What additional information can HRMS provide for PFAS analysis?
- Targeted MRMHR Acquisition
 - Similar to MRM acquisition but monitoring high resolution fragments
- Non-Target Analysis Using SWATH[™] Acquisition
 - Unknown ID using MS/MS fragmentation spectra (GenX impacted)
 - MS/MS library matching in AFFF-impacted groundwater

EPA Method 533 Mix: 25 ppb (SCIEX 5500+ TripleQuad)

The Power of Precision

Unique Features of a HRAM QTOF versus TripleQuad MS

- Q1 (mass filter) and Q2 (collision cell) are same as TripleQuad
- Q3 is replaced by very fast scanning time-of-flight tube (TOF)
 - Allows for high quality, high resolution full scan MS data
 - Precursor scans (TOF MS) and Fragment Scans (TOF MSMS)
- Applications:
 - High resolution MRM Quantitation; HRAM fragments results in greater compound specificity
 - Non-Target Acquisition with Suspect Screening; HRAM product scan for compound confirmation
 - Unknown Compound ID

SCIEX X500R QTOF System

DESIGN IMPROVEMENTS AND DETAILS

© 2019 DH Tech. Dev. Pte. Ltd.

MRM^{HR}: Targeted Acquisition

© 2019 DH Tech. Dev. Pte. Ltd.

and Rear and bad

Targeted Acquisition: MRM^{HR} Acquisition Method

HIGH RESOLUTION FRAGMENT IONS

- High resolution fragment ions results in greater compound specificity
- Optimized CE for each MRM
- Scheduled MRM capability to minimize scan time; unique retention time window for each MRM
- · Increased method flexibility

TOF MSMS											
Mass Table		Apply fragmen	t ion mass 🛛 App	Apply TOF start/stop mass		pply Scan Schedule	Import and autofill	Sort by precursor ion			
	Compound ID Group name		Precursor ion (Da)	Fragment ion (Da)	Accumul	Declusteri	Collision energy (V)	Retention time (min)	Retention ti		
1	A5760 1	A5760	205.97	122.0255	0.1500	-100	-20	3.40	30		
2	A5760 2	A5760	205.97	106.0305	0.1500	-100	-20	3.40	30		
3	A5760 3	A5760	205.97	78.0354	0.1500	-100	-24	3.40	30		
4	F4106 1	F4106	219.94	156.0239	0.1500	-60	-18	6.24	30		
5	F4106 2	F4106	219.94	77.9664	0.1500	-60	-32	6.24	30		
6	F4106 3	F4106	219.94	141.0004	0.1500	-60	-24	6.24	30		
7	UJV12 1	UJV12	293.00	205.9705	0.1500	-60	-24	2.49	30		
8	UJV12 2	UJV12	293.00	77.9662	0.1500	-60	-72	2.49	30		
9	UJV12 3	UJV12	293.00	142.0080	0.1500	-60	-36	2.49	30		
10	UNS90 1	UNS90	293.99	205.9688	0.1500	-60	-26	3.61	30		
11	UNS90 2	UNS90	293.99	77.9657	0.1500	-60	-62	3.61	30		
12	UNS90 3	UNS90	293.99	142.0073	0.1500	-60	-32	3.61	30		
13	QZY47 1	QZY47	307.02	219.9870	0.1500	-60	-20	5.10	30		
14	QZY47 2	QZY47	307.02	77.9668	0.1500	-60	-48	5.10	30		
15	QZY47 3	QZY47	307.02	156.0244	0.1500	-60	-32	5.10	30		

GenX (PFPrOPrA, HFPO-DA), TOF MS

Γ	Row	Component	Actual	Num	Mean	Standa	Percent CV	Accuracy	Value #1	Value #2	Value #3	C	Calibration for PFPrOPr/	rA_TOF: y = 21.63059 x + -112.61747 (r = 0.99636, r ² = 0.99274) (weighting: 1 / x)
	1	PFPrOPrA_TOF	10.00	0 of 3	N/A	N/A	N/A	N/A	N/A	N/A	N/A		2.0e5	
	2	PFPrOPrA_TOF	25.00	0 of 3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	11		50 1000 pg/ml
	3	PFPrOPrA_TOF	50.00	3 of 3	36.4	3.2	8.80	72.81	33.5	39.8	35.9		1.5=5	50-1000 pg/mL
	4	PFPrOPrA_TOF	100.00	3 of 3	97.8	6.1	6.25	97.84	94.6	104.9	94.0	11	1.505	
	5	PFPrOPrA_TOF	500.00	3 of 3	539.2	9.1	1.69	107.85	529.6	547.8	540.3		8 4 10-5	•
	6	PFPrOPrA_TOF	1000.00	3 of 3	1151.4	22.2	1.93	115.14	1142.4	1176.7	1135.1	11	. 1.0ED	
	7	PFPrOPrA_TOF	2500.00	3 of 3	2713.9	198.8	7.33	108.55	2540.1	2930.7	2670.8		5.0-4	
	8	PFPrOPrA_TOF	5000.00	3 of 3	5170.1	110.3	2.13	103.40	5103.9	5109.0	5297.5		5.064	
	9	PFPrOPrA_TOF	10000.00	3 of 3	9441.1	686.4	7.27	94.41	8790.2	9375.1	10158.2			×
Ľ												1	0.0e0 -	1000 2000 3000 4000 5000 6000 7000 8000 9000
														Concentration

• TOF MS, C6HF11O3 [m/z = 328.9677], LOQ = 50 ppt

GenX (PFPrOPrA, HFPO-DA): MRMHR 1

Blank Sediment **River Water** RW56 - PFPrOPrA_2 (Unknown...wiff2), (sample Index: 1) blank - PFPrOPrA_2 (Unknown....wiff2), (sample Index: 1) CFS-1 - PFPrOPrA 2 (Unknow....wiff2), (sample Index: 1) Area: N/A, Height: N/A, RT: N/A min Area: 1.764e4, Height: 6.177e3, RT: 2.34 min Area: 6.202e3, Height: 2.277e3, RT: 2.36 min 6000 · 2.363 25 2.337 2000 5000 20 1500 4000 intensity, cps Intensity, cps Intensity, cps 15 3000 -1000 10 2000 500 5 1000 0 2.3 2.4 2.5 2.6 2.7 2.2 2.3 2.4 2.5 2.6 2.2 2.3 2.4 2.5 2.6 2.2 Time, min Time, min Time, min

• MRMHR 1, [m/z = 329.0 -> 284.9795]

• MRMHR 1, [m/z = 179.0 -> 84.9899]

© 2019 DH Tech. Dev. Pte. Ltd.

Non-Target Analysis with SWATH[™] Acquisition

© 2019 DH Tech. Dev. Pte. Ltd.

Non-Target Acquisition: MS/MS^{ALL} using SWATH[™] Acquisition

A MODE OF DATA INDEPENDENT ACQUISITION PROVIDING MS/MS^{ALL}

- Wide Q1 isolation window is stepped across the mass range
- Can use variable mass windows to reduce complexity of MS/MS spectra, increased specificity
- Unlike IDA (Information Dependent Acquisition), MS/MS acquisition is NOT dependent on precursor intensity
- Advantage: Sequentially acquired MS/MS spectra of all precursor ions across the mass range
- Retrospective data analysis

Molecule Fragmentation

- Compounds will break apart into characteristic fragments which generally represent pieces of the original (precursor) molecule
- Fragmentation pattern can reveal the chemical structure
- TOF instruments obtain high resolution fragment masses resulting in greater specificity

HRMS – Multiple Lines of Evidence for Compound ID

- 1. Retention time (<2.5%) ✓
- 2. High resolution accurate mass (<5 ppm) ✓
- 3. Isotope Pattern (>80%) ✓
- 4. MS/MS Fragmentation Pattern Match with HRMS Library ✓

Results – Diprotic Compound, C5H2F8O6S (m/z 340.9372)

MS/MS Fragmentation Spectrum

Sediment Sample, CFS-21 Precursor mass error = 2.2 ppm MS/MS Fragment Spectrum:

- CO2 neutral loss (m/z 296.9470)
- SO3 (m/z 79.9573)
- CF3 (m/z 68.9957)

Results – NVHOS, C4H2F8O4S (m/z 296.9473)

MS/MS Fragmentation Spectrum

0%

Library Search Results

Name

60

CAS#

80

Formula

100

120

MM (Da)

Sediment Sample, CFS-21 Precursor mass error = 5 ppm MS/MS Fragment Spectrum:

- SO3 (m/z 79.9568)
- FSO3 (m/z 98.9560)
- CF3CF2O (m/z 134.9878)

140

Mass/Charge, Da

Fit

160

Rev. Fit

184 9850

180

Purity

189.9938

202.0924

200

CE (eV)

220

Non-Target Analysis of AFFF-Impacted Groundwater

- 9 AFFF-impacted groundwater samples collected from near US Air Force Bases
- Water samples analyzed by large-volume injection techniques, as detailed in SCIEX Application Note (1)

- 1 mL water combined with 0.65 mL MeOH & mass-labelled standards (Wellington Laboratories)

- 100 µL injection using SCIEX ExionLC[™] system; gradient conditions
- Instrumental analysis using SCIEX X500R QTOF system with SWATH® acquisition and MRM^{HR} in positive and negative mode
- Components list from updated SCIEX Fluorochemical HR-MS/MS Library 2.0, containing 253 compounds (positive, negative, zwitterion)

1. Roberts S, Hyland KC, Butt C, Krepich S, Redman E and Borton C. (2016) *AB Sciex Publication Number: RUO-MKT-02-4707-A*

SCIEX Fluorochemical HR-MS/MS Library 2.0

HIGH RESOLUTION MS/MS SPECTRAL LIBRARY RECENTLY UPDATED TO INCLUDE ADDITIONAL COMPOUNDS DETECTED IN AFFF AND AFFF-IMPACTED WATER

- 252 PFAS compounds covering negative, positive and zwitterionic compound classes
- Built specifically for the X500R QTOF system but also compatible with SCIEX TripleTOF® and QTRAP® systems

N-HOEAmP-FOS Details MS Spectra			Libra	y Spectr	rum:Mass S	Spectrum (1	ample 1	[Generic :	ingle Quad]: m/	2 67:
N-HOEAmP-FOSE (N-hydroxyethyldimethylammonioprop	yl			1.4e5 1.3e5						
Identifier				1.1e5 1.0e5						
CAS Index	I		ity, cps	9.0e4 8.0e4						
Formula C17H21O4SN2F17	рн I		Intens	7.0e4 6.0e4						
Molecular Weight 672.39795	NYYYY			5.0e4 4.0e4		159.15				
Mono Isotopic Mass 672.09503	* X X X X			2.0e4						
Libraries Fluoros 2.0	- I			-	100	150	200	250 30	0 350 40	00
Classes									miz, Da	_
Synonyms			1.84	ni faar	to millere	Spectrum	termole	1) IConstic	Finala Quadle o	and a di
 Additional Information 				1.4e5	uummass	specuum	(sample	i) (Generic	Single Quauj. I	102 07
Comments				1.3e5 1.2e5						
				1.1e5 1.0e5						
			ly, cps	9.0e4 8.0e4						
Library Search Thresholds			Intensi	7.0e4 6.0e4						
▼ Retention Times				5.0e4 4.0e4		159.15 159.15				
Default LC Model Name Retention Time				3.0e4 2.0e4						
▼ Transitions				1.0e4	100	150	200	250 3	00 350	400
									miz, Di	0

E=35, CES=30

R I 2

Ground Water Sample "A" – Legacy PFAS

Ground Water Sample "B" – Legacy PFAS

© 2019 DH Tech. Dev. Pte. Ltd.

Ground Water Sample "B" – Novel PFAS

© 2019 DH Tech, Dev. Pte. Ltd.

Ground Water Sample "B" – Novel PFAS

- HRMS provides additional power for PFAS analysis
- Increased specificity of MRM^{HR} acquisition
 - Mass resolve matrix interferences
- Non-target Acquisition; use of MS/MS fragmentation spectra
 - Unknown identification from fragment assignment
 - Compound confirmation using MS/MS library matching

The Power of Precision

